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A detailed experimental and theoretical study of quantum oscillations in the magnetostriction
and Young’s modulus of p-PbTe is presented. The valence band of PbTe is approximated by a
spheroidal nonparabolic model in which the effects of strain on the valence-band parameters are
described by a deformation potential model. Using appropriate thermodynamic derivatives of
the modified Lifshitz~Kosevich expression for the oscillatory part of the electronic free energy,
it is shown that both types of oscillations arise mainly from relative shifts of the valence-band
maxima due to shear strains, accompanied by intervalley charge transfer. Band parameters
derived from the periods, phases, and spin splitting of the oscillations are in generally good
agreement with values reported by other workers. A detailed comparison is made of the experi-
mentally observed oscillation amplitudes with those predicted by theory, and satisfactory agree-
ment is found. The ratio of the amplitudes of the two effects yields a value of the valence-band
deformation potential £5=7.9+1.3 eV in good agreement with a value found from piezoresis-
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tance experiments by Burke.

I. INTRODUCTION

The Landau quantization of the energy levels of
the conduction electrons in a solid placed in a mag-
netic field forms the basis for some of the most
powerful techniques for establishing the electronic
structure of solids.! One can construct, using the
thermodynamic potential for the electronic system
as calculated by Lifshitz and Kosevich, a free en-
ergy which is a function of the magnetic field, the
temperature, and the elastic strain. The first
derivatives of the free energy with respect to these
three thermodynamic variables lead, respectively,
to the magnetization, the entropy, and the elastic
stress. Owing to the quantization of the electronic
states, the free energy is periodic in the reciprocal
of the magnetic field. This oscillatory character
is consequently manifest in the magnetization, en-
tropy, and stress.

The oscillatory magnetization (de Haas—van
Alphen effect) has been most extensively used in
the study of Fermi surfaces in metals. More re-
cently, the oscillatory entropy, which is revealed
as temperature oscillations in a thermally isolated
crystal subjected to a swept magnetic field, has
also been developed as a useful tool for such
studies. The third effect, which appears as an os-
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cillatory magnetostriction, i.e., the dimensional
change of a crystal placed in a magnetic field,
forms one of the subjects of this paper. The elas-
tic constants of the crystal, which are the second
derivatives of the free energy with respect to
strain, also show quantum oscillations, and form
the second main topic of this paper.

We have measured the oscillatory behavior of
the magnetostriction and the Young’s modulus of
single crystals of p-type lead telluride, a multi-
valley degenerate semiconductor, and determined
from these results the periods, phases, effective
masses, and g factors for this material. From-
the amplitudes of these two quantities we have also
determined the deformation potential =, for the
valence band in lead telluride. The amplitude anal-
ysis is considerably simplified by using the ratio
of the amplitudes of the two effects. This method
of obtaining deformation potentials in semiconduc-
tors, or the generalized deformation parameters
for Fermi surfaces in metals, is a new and im-
portant feature of the techniques described in this
paper.

Magnetostriction (MS) was first observed by
Joule, in 1842, in a bar of iron.? The main body
of work since that time has been on ferromagnetic
materials in which the effect is largest: The strains
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in Fe and Ni are typically 10°-10" at the satur-
ation field. The first observation of MS in a non-
ferromagnetic material was made by Kapitza in
1929 in a series of classic experiments in pulsed
fields up to 250 kG.® Kapitza observed a monotonir
MS in Bi, Sb, graphite, Ga, Sn, and W, finding the
effect to be greatest in Bi, where the strain € is
~107% in a field of 150 kG at room temperature.

In 1963, Chandrasekhar pointed out that oscilla-
tory MS should be observable in materials which
show the de Haas—-van Alphen effect.* Subsequent-
ly, Green and Chandrasekhar observed the first
such oscillations in Bi.® MS oscillations have since
been observed in Ag,® As,” Be, ® Bi,? Cd,!° Cr, 1!
Cu, %12 Ga,!® GaSb, * PbTe, 1% 1¢ §b, 17 §n, 1% 18 and
Zn.' One of us (Ref. 20) has observed MS oscilla-
tions in Au. The oscillatory strain amplitudes for
these materials at 25 kG and temperatures near
T=4 K range between 10% and 10™°. For PbTe
at this temperature and field, €~10-",

Magnetostriction in diamagnetic systems is re-
lated directly to the strain dependence of the Fermi
surface. Shoenberg® was one of the first to point
out that the diamagnetic oscillatory magnetostric-
tion could be analyzed in terms of the oscillatory
magnetization M and the strain dependence of the
appropriate extremal cross-sectional area of the
Fermi surface:

3InS
— 0
€,=-MBs), 861"‘ ,

(1.1)

where B is the magnetic field, s?, is a component
of the elastic compliance tensor, and S,, is the ex-
tremal cross-sectional area of the Fermi surface
perpendicular to the applied magnetic field.
(Throughout this paper we use the standard “en-
gineering” form of the reduced stress and strain
tensors.??) Equation (1.1) was derived using ther-
modynamic considerations together with the as-
sumption that the strain dependence of the oscilla-
tory diamagnetic free energy is dominated by the
strain dependence of the S,, which appears in the
argument of the oscillatory factor in the free en-
ergy.® The GaSb and Be experiments were ana-
lyzed using Eq. (1.1); a value for 3InS,, /3¢, was
found by measuring separately the magnetization
and magnetostriction oscillations. In the present
paper we derive an expression for the magneto-
striction in terms of 3InS, /3¢, directly from the
total free energy, using a modified form of the
Lifshitz-Kosevich expression for the diamagnetic
free energy. We then use a simple multivalley
deformation potential model to relate 3InS,,/d¢; to
the strain dependence of the PbTe valence band.

A similar method has been used by Aron and
Chandrasekhar for Bi® and by Belson et al. for
PbTe.!® However, the results and conclusions of
Belson et al. differ from ours at several points.
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An important new aspect of our analysis is the
direct comparison of the MS oscillations with quan-
tum oscillations in the elastic constants. By taking
the ratio of the amplitudes of these two effects,

the analysis is considerably simplified in a man-
ner similar to the simplification obtained by taking
the ratio of the amplitudes of the MS oscillations
and the magnetization oscillations in Eq. (1.1).

Quantum oscillations in the velocity of sound
were first reported by Mavroides et al. in Bi in
1962.2* Velocity oscillations have since been re-
ported in Al, % Au, ® Be, ¥ Ga, ?® and PbTe.® The
amplitudes of these oscillations at 50 kG range
from Av/v~ 1075 for Au with T=4 Kto Ay/v~1073
for Ga at 1. 2 K. Sound-velocity oscillations due to
geometric resonances in Al have also been ob-
served with 4y /v~107° at 2 kG for T=4.2 K. %

The velocity oscillations in Ga and Bi have a spiked,
or saw-tooth, appearance characteristic of giant
quantum oscillations, % 3 a special quantum effect
which occurs when gl > 1, where ¢ is the sound
wave vector and / is the electron mean free path.
The experiments in Au, Be, Al, and PbTe were
carried out at frequencies such that g/ <1, and the
oscillations have the sinusoidal appearance of

de Haas-van Alphen oscillations.

In our experiments we have used a composite
mechanical oscillator technique which measures
the fractional change in Young’s modulus. To em-
phasize the fact that we measure oscillatory elas-
tic-constant variations instead of sound-velocity
variations, we call this effect magnetoelastic (ME)
oscillations.

Theoretical treatments of the oscillatory mag-
netic field dependence of the velocity of sound have
been given by Quinn and Rodriguez, *® Rodriguez, %
Blank and Kaner, ** and Pustovoit and Poluéktov3®
for electronic systems which have a simple spher-
ical Fermi surface. Blank and Kaner investigated
giant quantum oscillations. The others limited
themselves to the case gl <1, with Pustovoit and
Poluéktov emphasizing the effect of space charge
associated with the ultrasonic wave. In their work
on Ga, Neuringer and Shapira used the theory of
Blank and Kaner to relate the amplitude of the giant
quantum oscillations in the attenuation to the am-
plitude of the velocity oscillations. 2 They obtained
better than order-of-magnitude self-consistency
for the two effects. Rodriguez’s theory, which is
meant to apply only to the case gl <1, gives am-
plitudes which are four orders of magnitude small-
er than the giant-quantum-oscillation amplitudes
observed in Ga; however, Rodriguez’s theory gives
order-of-magnitude agreement with the amplitudes
observed in Al and Au.

Rodriguez derived an expression for the velocity
oscillations by considering the electronic contribu-
tion to the bulk modulus. He simply calculated the
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second derivative with respect to volume of the
Lifshitz-Kosevich expression for the diamagnetic
free energy of a free-electron gas, assuming the
major contribution to this derivative to come from
the strain dependence of the S, which appears in the
oscillatory factor, and using the free-electron ex-
pression 8InS,, /3V = — 2. This approach is quite
similar to those mentioned above for calculating
expressions for the MS oscillations. For the anal-
ysis of their Be experiments, Testardi and Condon
derived expressions relating elastic-constant os-
cillations (¢l <<1) to magnetization oscillations. @
They measured separately the magnetization and
velocity oscillations and from the combined data
report values of 3InS,/d¢;. The ideas behind their
arguments are quite similar to those used to derive
Eq. (1.1), where the magnetization and ME oscil-
lations are related. Whereas Rodriguez’s equa-
tions are limited to the free-electron gas, a ratio
method such as that used by Testardi and Condon
can be applied to an electronic system with a more
general Fermi surface. Testardi and Condon also
included B-H effects and the interaction between
strain and B in their analysis.

In Sec. II, we describe a spheroidal nonpara-
bolic multivalley deformation potential model of
the valence band of PbTe. In Sec. III, we derive
theoretical expressions in terms of our valence-
band model for the MS and ME oscillations from
the appropriate strain derivatives of a modified
form of the Lifshitz-Kosevich free energy. In
Sec. IV we describe our experimental methods.

In Sec. V A, band parameters obtained from our
experimental results are compared with results
previously obtained by other workers. Section

V B presents an analysis of the amplitudes of the
MS and ME oscillations and their ratio, leading
to an experimental value of the valence-band de -
formation potential =, for PbTe. Section VI sum-
marizes our conclusions. Some basic relation-
ships for the spheroidal nonparabolic energy-band
model are presented in the Appendix.

II. PbTe VALENCE BAND

Lead telluride is a cubic (NaCl structure, point
group m3m) degenerate semiconductor charac-
terized (at liquid-helium temperatures) by a small
energy gap (~0.2 eV), high carrier mobilities
(2 10° ecm?V-'sec-!), and small effective masses
(~o. 05m,). A mass of experimental evidence
(de Haas—van Alphen oscillations, Shubnikov-de
Haas oscillations, Azbel-Kaner cyclotron reso-
nance, interband magneto-optical absorption, and
other optical and transport phenomena®”) indicates
that the Fermi surface of both p- and n-type PbTe
is well described by (111)-directed prolate spher-
oids centered on the L points of the Brillouin zone

| v

(Fig. 1). There are eight half-spheroids or,
equivalently, four full spheroids in the zone.

Cuff, Ellett, and Kuglin®® * found a strong car-
rier-concentration dependence of the (111) cyclotron
mass for p-type PbTe which indicates that the
valence band of this material is nonparabolic.
Dixon and Riedl® found similar results for the
carrier-concentration dependence of the electric-
susceptibility hole mass of PbTe. In order to take
nonparabolicity into account, we use a model due
largely to Kane* and Cohen. *? Considering the
symmetry of PbTe and using a coordinate system
where p; is the momentum component along [111],
and p, and p, are the components of the two orthog-
onal momenta, Cohen’s Eq. (26) becomes

Pl (E_ﬁ_> ( 1B, _pE > . (2.1)
2m1 27”'3 Eg 2Etm3

where E, is an effective energy gap between the
valence and conduction bands, m,; and m 4 are the
band-edge effective masses, and mj is the longitu-
dinal effective mass of the conduction band, which
is experimentally found to be of the same order of
magnitude as my.*® The Fermi surface (E = Ej)
is more easily visualized by writing Eq. (2.1)
in the form

E=@2+p2)/2m, + p2/2m, (2.2
where

my=my[1+E/E, +p} /(2E,m3)] , (2.3)

my=ms . (2.4)

Equation (2. 2) describes a surface of revolution
about the 3 axis which has extremal cross sections
at p3=0 and p§ =myE,[(E/E,)ms/m} -1) =1]. For
the energy and mass values of our samples the
position of the second extremum is imaginary,
i.e., it does not exist, and Eq. (2.2) describes a

FIG. 1. Brillouin zone of PbTe showing the eight
(111)-directed half-spheroids which contain the car-
riers (either electrons or holes).
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FIG. 2. Square of the normalized cyclotron mass
versus the reciprocal period for B Il [111]. The inter-
cept and slope are used to calculate m and E, from
Eq. (2.9).

Fermi surface which is spheroidal except for a
slight bulging for large values of p;. In this con-
nection, we note that recent work by Schilz* indi-
cates that when the carrier concentration becomes
large (p >5x%10'® cm™3), the valence-band Fermi
surface becomes cylinderlike in shape. The ex-
tremal cross section perpendicular to the p, axis,
located at p3=0, is given by

Sms=2mmyE(1+E/E,) . (2.5)

The cyclotron orbits of importance in the present
work do not traverse large values of ps, so that

the p; dependence of the transverse mass indicated
in Eq. (2.3) is small and can be neglected. Instead
of Eq. (2.3) we therefore use

my=m(1+E/E,) . (2.6)

Equations (2. 2), (2.4), and (2.6) describe the
spheroidal nonparabolic model for the energy sur-
faces of p -type PbTe which we use throughout the
remainder of this paper. As is conventional, we
also define a mass anisotropy parameter K=m,/
m;, which in our model has an energy dependence
of the form K= (my/m,)(1+E/E,)"".

A test of the validity of the model and an evalua-
tion of the numerical values of the model param-
eters appropriate to p-PbTe can be made using our
data and the data of Cuff e al. When the magnetic
field is parallel to the unique axis of the spheroid,
the quantum oscillation period P3 (E = Ej) is
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given by

eh en
Csms N CEle(l +EF/E[) ’

Py= 2.7)

and the corresponding normalized cyclotron mass
K¢ is

1 asS m E
= m3 =—1 ZF) . (2.8
He= 2mm, oF m0<1+2E,> )
E-E

F
(For derivations of these relations, see the Ap-
pendix. In this paper u is always used to denote
cyclotron masses normalized to m,, the free-elec-
tron mass, and m is always used to denote un-
normalized band masses. Notice that p,mq#m,.)
Solving for Ep from Eq. (2.7), substituting this
value of E into Eq. (2.8), and squaring the result
gives the relation

(2.9)

where C=4eli/myc=4.63 10" eV G-'. Thusaplot
of p? versus P;! gives the band-edge mass m; and
the energy gap E,. Such an analysis was carried
out by Cuff et al.,*® and in Fig. 2 we show a plot
of their data along with values found from this ex-
periment. A least-squares fit of the data gives
my=(0.018+0.003) m,and E,=0.10£0.02eV. A
similar study of our data and that of Cuff ef al. in-
dicates that m,; is essentially constant over the
range of carrier concentrations 3.6x10'7 cm™3

<p <83.5x10'® cm~® and has a value m; =m,
=(0.1920.02) m,.

The direct gap A between the valence and con-
duction bands of PbTe at T=4.2 K has been de-
termined in two different experiments. Mitchell
et al.* find A=0.190+0.002 eV from magneto-op-
tical studies of epitaxial films, and Butler and
Calawa* find A=0.187 eV from magnetoemission
studies with PbTe diode lasers. The fact that the
effective gap E, in our model is smaller than the
measured direct optical gap A indicates that in-
teractions between the valence band and the higher
conduction-band states are important in determining
the valence-band parameters.

The interaction of the electron spin with the
magnetic field splits each Landau level by an
amount +ge#iB/4myc, where the electron g factor
depends on the electron spin-orbit interaction.

The two series of quantum oscillations associated
with the two spin orientations interfere, producing
a single set of quantum oscillations with an ampli-
tude controlled by the factor cosimgu, where i is
the normalized cyclotron mass appropriate to the
applied field direction. Knowledge of this factor is
important in our amplitude analysis.

The g factor is related to the components of a
second-rank tensor and in PbTe has a directional
dependence of the form

U‘f= (ml /m0)2+ le(PsE,mo)'l y
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g°=g% cos®0 +g? sin%0 , (2.10)
where g, and g, are the g factors for the field par-
allel and perpendicular to the [111] axis. The re-
sults of a number of different experiments (Table
1) indicate that at the band edge, g,= 50 and that

g, decreases with increasing carrier concentration.
Burke et al. " find g, =7+ 2. The carrier-concen-
tration dependence of g, is related to the nonpara-
bolicity of the bands; the interband interactions
which determine the g factor are quite similar to
those which determine the inverse effective mass.
To a first approximation, both experimentally and
theoretically, * ¥ g, varies with carrier concen-
tration as 1/m,. Schilz** found the spin factor

3g 1 to be directionally independent. This is borne
out by other work: For example, using the values
of Burke ef al. and Eqs. (A9) and (2.10), we com-
pute 3gi =0.56 for the ellipsoid with the smallest
extremal area when B is along [110]. This value is
sensibly the same as the values 0.58 shown in
Table I for the [100] and [111] directions. Since
we were able to measure the spin splitting only with
B [100], we will assume the amplitude factor
cosimgu to be the same for the [100], [110], and
[111] directions.

The effect of strain on nondegenerate® energy
levels in semiconductors can be described by a
deformation potential tensor =.% ™% In this scheme
the shift in the energy of the point v in a band is
described to first order in the strain € by 6E¥
=EY:€¢. I general, each point in the band will
have nine deformation potentials associated with it.
However, this number is usually greatly reduced

at a symmetry point. At the L points in PbTe there
are only two independent deformation potentials

for each band, and we can express =", using the
notation of Herring, °% % ag =Y, = 5,6, + Z,ulu’,
where 0,; is the Kronecker & and the unit vector

# points to a particular L point. This leads to an

energy shift of the form
OEY=(E,+3E,) (€ +€,+€5) +3 E (t €t €52 €4)

(2.11)
where the signs depend upon v. The PbTe deforma-
tion potentials have been calculated by Ferreira.’*
However, there has been only a limited amount of
experimental work on determining the PbTe de-
formation potentials. Ferreira’s results are shown
in Table II along with the deformation potentials
derived from piezoresistance measurements by
Ilisavskii®® and Burke.®® In order to find the de-
formation potential from piezoresistance, the elas-
tic constants and the ratio of the mobilities per-
pendicular and parallel to the [111] axis must be
known. Ilisavskii did not have good values for
these two parameters, so we have corrected his
deformation potentials using Burke’s values. The
variation of the energy gap with pressure has been
measured optically®” giving (3= +=Z5) - (325 + =2
= 9.5 to 11.4 eV, where the superscripts refer
to the valence or conduction bands. Ferreira’s
theoretical values give 11.6 eV, in reasonable
agreement with experiment.

The band-edge masses m; and m3 are found in
the work of Lin and Kleinman® to be approximately
given by m,/m;=M,; /A, where the M, (i=1,3) are
appropriate momentum matrix elements. Since we

TABLE I. Spin-splitting factors and g values for p-type PbTe. Subscripts (100) indicate a {100) magnetic field

direction.
Carrier conc

Experiment (10 em™)  (3gl g0 K100y &co0> 28 My 1y &
Butler
and Calawa o* 29°®
(Ref. 46)
Cuff et al.
(Ref. 39) 0 5148
Present work g 0.65:0.05  0.041:0.004°  32:4 0.027£0.002 48459
Sample X6
Burke etal. 5 0.58£0.01  0.051£0.008  23+5 0.58£0.01  0.0360.002 322
(Ref. 47)
Present work 5 5 0.55£0.05  0.055£0.002°  20+2 0.038+0.001 29+ 3¢
Sample X5
Schilz

.58+0.03°
(Ref. 44) 4 0.58+0.03° 0.040+0.008 296
Schilz o
(Ref. 44) 6 0.53£0.02° 0.044+0.009 24+5

*p-n junction.
bAssuming conduction- and valence-band g factors
equal.

®Computed from Eq. (A9).
4Assuming gu the same along (111) and (100).
°Using a different splitting scheme than Schilz.
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TABLE II. Deformation potentials of PbTe (eV).

Valence band Conduction band

— =e

=Y — =
Source “q =y =4 oM

Theory
Ferreira
(Ref. 54) —8.93 10. 46
Experiment
Ilisavskii
(Ref. 55)
Burke
(Ref. 56) 8.5

—4.36 8.29

5.6% eoe 3.8

2Corrected values. (See text.)

expect these matrix elements to be insensitive to
small strains, we find, using Eq. (2.11),

dlnmy, 3 _ dlnA _ G,/A fori=1,2 or 3
d¢, 3¢, +G,/A fori=4,5, or 6,
(2.12)
where
Gi=(E5-E) +HE - ), G- d(E-ED)
(2.13)

and the sign depends upon the particular L point
considered. Since the g values depend on the en-
ergy gap in a similar manner, they should have a
similar type of strain dependence.

III. THEORY
A. Thermodynamic Relations

We obtain theoretical expressions for the mag-
netostriction and magnetoelastic oscillations by
considering the free-energy density of the crystal
in a magnetic field as the sum of the zero-field
elastic energy and the free energy of the diamag-
netic electronic system,

F(€,T,H)= 3 27 cd;€ €+ Qe T, B)+ 21M?
i,4=1

(3.1)
where the c}; are zero-field components of the
elastic stiffness tensor. The magnetization can be
obtained from this free energy as’® M= -9F/8H
= - 32/9B and the stress as 0,= 9F/9€;. Since we
are interested in oscillatory effects, we need con-
sider only the oscillatory part of . For this we
use the Lifshitz-Kosevich expression in the modi-
fied form given by Williamson et al. *:

rcS?
Q= 289
Zv)%:,lA,wcos< B 9 . (3.2)

A,, is a temperature-dependent amplitude function
which varies slowly with field,

B eB 3/2|azsv‘-1/2 e-xa“"TD/BCOS%)\ﬂgy‘J,v
A,,=2rT|— 3 P
he [8p3 lsv o A sinh(Aa 1, T/B)
= m

3.3)

where ,, g,, and S,, are, respectively, the reduced
cyclotron mass, effective g factor, and extremal
cross-sectional area of the vth sheet of the Fermi
surface, Tp is the Dingle temperature represent-
ing the effect of electron scattering, and
a=2n%myc/fe. The phase factor is ¢,=2my

+ 47, where y is the phase associated with the Lan-
dau quantization and the upper sign is used when
Shis a maximum, the lower for a minimum. From
Eq. (3.1) we find the general expression for the
strain:

6 aQ BM>
— 0 - 2
el_%)ls‘,(c, b, 4M s, ) (3.4)

where the s}, are defined by
$S o0 o
jzi SijCjr = O -

In PbTe, the magnetization is small enough so that
the last term in Eq. (3. 4) can be neglected. (Al-
so, because of the smallness of M, the difference
between B and H is inconsequential in our analy-
sis.) The oscillatory magnetostriction in the
[1,m,n] direction for a PbTe crystal with zero

(or constant) external stresses is thus described
by the equation

13 QY
€, . =— i) —imn 0 3.5
Imn {7e aE, i 8(, ’ ( )

where 9¢,,,/8¢, is a product of direction cosines,
€ mn=1%, +m%, +nle; +mne,+In€s +Ilmeg.

The inverse of Young’s modulus in the [l,m,n]
direction is defined by (¥;,,) "2 =9€;mn/30; s
therefore, the ME oscillations are given by

Yl—r}m(B) - Y;r}m(o) = A<Ylmn)-1

€ m o B0y 3¢ a%Q
Y80, 80, 0€;0€,

(3.6)

it O€;
Using the identity 80, /80y, = 9€;m,/9€, and the
approximation 9¢, /90,=s},, the ME oscillations
are thus described to first order in the elastic
constants by

- 820
aly 1l__ >, Simn ZStmp 0 0 8¢
tmn) i,j,—k/t=1 361 a€j 1RO 4t ataaet

(3.7

6 9¢

B. Strain Derivatives of

In order to evaluate the strain derivatives of

2, we need to evaluate the strain derivatives of the
various band parameters which appear in Q. To
this end, we next use the model of the PbTe band
structure which we have presented in Sec. II and
the Appendix to express the strain dependence of
the effective masses and cross-sectional areas in
terms of the strain dependence of the Fermi en-
ergy and the band gap. We then obtain expressions
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for the strain dependence of these two characteris-
tic energies in terms of the deformation potential
parameters.

The band shifts described by the deformation
potential scheme lead to variation in @ via three
types of effects. The first is due to the relative
shift of the valleys produced by a shear strain.
Under a shear, some of the valleys move up in
energy and some move down. This relative shift
of the valleys is accompanied by intervalley charge
transfer and changes in the Fermi surface cross-
sectional areas. Second are effects due to the
nonparabolic bands. Since the energy bands of
PbTe are nonparabolic, a shift in the Fermi en-

ergy also produces a change in the band parameters.

Third are effects due to the strain dependence of
the energy gap. The conduction- and valence-
band deformation potentials are different; there-
fore, the energy gap is strain dependent. A change
in the gap produces a change in the curvature of the
bands, hence a change in band parameters. The
first effect can occur only with a shear strain,
whereas the last two effects will accompany both
shear and dilatation strains. We will see from
what follows that the dominant effect in PbTe is
due to the intervalley charge transfer. This is
evidenced experimentally by the fact that both the
[100] ME and MS oscillations, which are the only
ones to come from pure dilatation strains and in-
volve no intervalley charge transfer, are at least
an order of magnitude smaller than the oscillations
along other axes.

We account quantitatively for the strain depen-
dence of the cyclotron and band masses by differ-
entiating Eqs. (A9) and (A5):

Fer =Cw) T - ()]

26
+Cg(H) v¢, (3.8)

T - Clon*) et [1- Cym*)]

96

+C9(m*)g' , (3.9)
where

Ce(w) = (1/14)?[cos?0 + (u, /2u,) sin®6] ,  (3.10)
Co(p)=(n/ps)?cosbsing[1 - p, /p,],  (3.11)

and C;(m*) and Cy(m*) are obtained from Egs.
(3.10) and (3.11) by replacing u, p,, and y; with
m*, m,;, and m,, respectively. From Eqgs. (2.6)
and (A9) we see that the transverse masses are
functions of both the Fermi energy and the energy
gap. There is a further energy-gap dependence
of the band-edge masses m; and mg3, which we

discussed in Sec. II. Assuming that the effective
gap is proportional to the direct gap, E,< 4, sim-
ple differentiation gives the relations
dlny, -C 9InEp +C, 3InE,
3¢, F oa¢, 8¢, ’
dlny, _ 9InE,
d¢ d¢; '’

(3.12)

(3.13)

where

2E; /E,

Cr = 1125, /E, ’

(3.14)

1+E,/E,
) i 3
Ce 1+2E /E,’ (3.15)
and, further

Blnmt
ai,

9InEg
€,

9
-c, +(1-c,) LnE (3.16)
81nm, _ alnE
Toe;, ae,
where

, (3.17)

c - _Er/E,
m

“T+E,/E, (3.18)

Equations (3.8)-(3.18) express the strain depen-
dence of p and m* in terms of the strain dependence
of the energy gap, the Fermi energy, and the angle
between the spheroid axis and the magnetic field.

From Eq. (A6) we see that the strain dependence
of the extremal cross-sectional area is

dInS, _ dlnm* . SInEp (3.19)
d€; d¢, d¢;

Thus, using Egs. (3.9), (3.16), and (3. 17) with
(3.19), we are also able to express 8InS,,/d¢€; in
terms of the strain dependence of E,, Ep, and 6.
We have assumed E, « A; therefore, 8InE, /8¢,
= 3lnA/d€;, which is given by Eq. (2.12). The
strain dependence of the Fermi energy is com-
puted using the constraint that the total number
of carriers in the sample @ is independent of the
strain. For our spheroidal model [see Eq. (A1)],
the density of carriers in the vth valley is

pv=(2/2/30%1 )Y m,m} 2 (ES)*/ 2 . (3. 20)

Since ® = V32, p,, where V is the crystal volume,
the constraint 8® /8¢, =0 leads directly to

alnE
81y +0gy+ 03+ 7 ((% C)E
v=1

4
+Grop D ) =0,
v=1 d¢ €
where §,; is the Kronecker symbol, and we have
used (3.16)—(3.18) to express the strain derivatives
of m, and m, in terms of the strain derivatives of
E; and E;. The Fermi energy for our p-type sam-

(3.21)
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ples is the difference between the chemical poten-
tial £ and the valence-band maximum Ey; there-
fore,

E.M_E_i_l_<£ _i)

8¢, Ep \9¢; O¢ (3.22)

Using the valence-band shifts and the gap depen-
dence described by the deformation potential
scheme, Egs. (2.11), (2.12), (3.22), and (3. 21)
lead to expressions for 9InE%/8¢, in terms of the
deformation potentials. There are two cases to
be considered:

(i) Dilatation strain (i=1,2, or 3). Equations
(2.11) and (2. 12) indicate that for this case all
the gap and band-edge shifts are independent of
v. Therefore, the sums in Eq. (3.21) are re-
placed by a multiplication factor of 4, giving

8lnE%  3+(1-2C,)G/A

d¢, 1+%C, (3.28)

(i) Shear Strain (i=4,5, or 6). From Eqgs.
(2.11) and (2.12)
4 9 v 4 9 v
> By ang 3 MREe g,

364 v=l 86{

v=1

From these and Eqgs. (3.21) and (3. 22), it follows
that 8¢ /8€,=0, so that

dnEy _ 1 3Ey 1 =,

=tz 3w .
d¢, Ey ¢, 3 3Ex

(3.24)

We next examine the strain derivatives of
which appear in the expression for the MS and
ME oscillations, Eqs. (3.5) and (3.7), using the
expressions for the strain derivatives of the band
parameters Eqs. (3.8)-(3.24). Equations (3. 2)
and (3. 3) indicate that 82/8¢€; contains many strain
derivatives since the effective mass, g factor,
Dingle temperature, cross-sectional area, and
volume are, in principle, all strain dependent.
However, by completely differentiating Eqs. (3. 2)
and (3. 3) and numerically evaluating the various
terms using the parameters appropriate to our
PbTe samples, we find that the contribution from
the strain derivative of S, in the argument of the
cosine factor is at least an order of magnitude
larger than any other contribution. (In this nu-
merical analysis we assume that 8InT, /9€; and
dlng/9¢€, are at most as large as 8lnu/8¢,. Also,
since the crystal strains never exceeded 1078 in
our experiments and the cubic symmetry was only
slightly perturbed, we can assume 36/8¢;< 1.
This is equivalent to assuming that the Fermi-
surface ellipsoids continue to point very nearly
along the body diagonals of the strained cubic
lattice.) Schematically,

Sy NS, (ﬁL ) _
ehB 9¢, ehB
Since we find that 8lnA /8¢, is roughly of the same
order as (or less than) 8InS,/9¢,, one of the prin-
cipal factors which determines the relative mag-
nitude of the various terms is cS,/e#ZB. This num-
ber is equal to 27 times the number of Landau
levels below the Fermi surface. Since our ampli-
tude measurements were always made with os-
cillations corresponding to Landau numbers greater
than 5, the 9InS,,/9¢; term dominates. The fact
that this is the dominant term is also borne out
experimentally by the observed phase of the MS
oscillations. The amplitude analysis in this work
is made with that part of the data which shows only
a single oscillation. This oscillation corresponds
to the smallest extremal area, which we label S5,
Since numerical evaluation shows that the contri-
butions to 32/3¢; from other extremal areas and
from harmonics (A >1) are negligible, the expres-
sion that we use for our MS amplitude analysis
takes the form

0Q ¢SS 8InS%, . [ ¢S4

e~ G 3 e on( 8 -or)

m {3.25)

where the sum is over all the equivalent pieces of
the Fermi surface which contribute to the given
period.

We further find from numerical evaluation of
the various terms in the second strain derivative
of Q that under the experimental conditions just
discussed we can write

3% A cS2\?
9¢,9¢, 0\ ¢xB
19€,
0 0 0
x5 Lmﬁagl‘.‘s_mcos(%_%) . (3.26)

Equation (3. 26) could include terms in 8%5%, /8¢, 9¢,;
however, a comparison of phases in the MS and
ME oscillations shows that these terms are neg-
ligible.

C. Analytic Expressions and Ratio

Equations (3. 5)and (3. 25), and (3. 7)and (3. 26)
combine to give the expressions which we use in
analyzing our MS and ME experimental data,
cS%, & 8¢, <0 9lnS?,
ehB s?ﬂ 1,41 %€, ij a(,

€1mn=A10
. [ cS%
XSln(e—ﬁE —¢1> , (3.27)
0\ 2 8. 0\2
A(Ylmn)-1=A10< CSm Z; Z; _sl_flm.s(’)j %)
s(’)n i,4=1 8({ 8(,

ehB

X c S(c_S_°L_ > (3.28)
O eh—B ¢1 . .
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In our analysis of the experimental data we fit the
MS data to Eq. (3. 27) and separately fit the ME
data to (3.28). We determine experimentally the
values of A,y and S and find experimental values
for the strain derivative sums which we then relate
to the deformation potentials. From Egs. (3. 27)
and (3. 28) we see that the complicated coefficient
Aj, should disappear from the expression for the
ratio of the MS and ME amplitudes for a given
sample under the same thermodynamic conditions,
i.e., the same B, T, crystallographic orientation,
etc. It turns out, however, that we find the MS
and ME Dingle temperatures T§ and T} to be
different, leading to a term explap(T% - T5)/B]

in the expression for the ratio. Even then, con-
sideration of the ratio leads to a considerable
simplification of the analysis, and we use the ratio
in a separate approach to analyze the deformation
potential.

IV. EXPERIMENTAL METHODS

The oscillatory magnetostriction was measured
by determining the change in capacitance of a
parallel-plate capacitor composed of one fixed plate
and one plate glued directly to the end of the or-
iented single-crystal PbTe sample. We used a
three-terminal capacitance cell based on a differ-
ential thermal expansion cell described by White,
modified to allow a variety of samples with differ-
ent dimensions to be used in one cell. A ratio
transformer bridge (General Radio 1615-A) and a
phase-sensitive null detector were used to measure
the change in capacitance. This technique allowed
us to detect a change in capacitance of the order of
107% pF, which corresponded to strains of a few
times 10719,

The magnetoelastic oscillations were measured
using the mechanical composite-oscillator tech-
nique developed by Quimby and his associates. & %2
The composite oscillator consisted of a quartz bar
(typical dimensions 1X0.25 X 0.25 cm) bonded
to an oriented single-crystal PbTe bar of identical
transverse dimensions. The long axis of the quartz
transducer was in the Y quartz direction. The X
faces of the quartz were coated with chromium-gold
electrode films so that a Young’s-modulus vibra-
tional mode for the composite system was excited
when a sinusoidal voltage was applied to the elec-
trodes. The electrical leads, which also served
to support the oscillator, were attached to the
transducer at nodal points. The composite oscil-
lator was driven by a frequency-stable constant-
voltage source, usually at a frequency near the
fundamental resonance of the transducer (typically
250 kHz). Changes in the Young’s modulus of the
sample as a result of an applied magnetic field
produced changes in the resonance frequency of
the composite oscillator (appropriate analytic ex-

pressions are given by Balamuth®) which in turn
produced changes in the electrical impedance of
the oscillator circuit. This impedance change was
detected directly by monitoring the voltage across
a small series resistor. The voltage was ampli-
fied, rectified, and applied to an X-Y recorder.
The response of the composite oscillator was in-
vestigated as a function of magnetic field at sev-
eral driving frequencies on each side of the reso-
nance as well as at the resonance peak itself in
order to compare the changes in dispersion and
attenuation of the system. In the 250-kHz range,
attenuation effects were found to be completely
negligible compared with the resonance -frequency
shifts due to changes in the PbTe Young’s modu-
lus. Because of the high @ of the composite oscil-
lator (typically 103-10%), the sensitivity was
high; the minimum detectable fractional change in
Young’s modulus was estimated to be 107%-107",
It is noteworthy that even in its relatively unsophis-
ticated form this system compares favorably in
sensitivity with the sing-around ultrasonic technique
commonly used to measure sound-velocity
changes. ®

Details of the MS and ME experimental tech-
niques and apparatus have been described else-
where by one of us (T.E. T.). %

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Band Parameters

Our experiments were performed on single-
crystal samples from two different boules of p-
type material grown by one of us (T.E. T.) by the
Czochralski method. The boules were labeled
X5 and X6. Samples were spark cut from neigh-
boring sections of the middle of the boules. Hall
measurements gave carrier concentrations of
p=(8.5+0.2)x10'® cm 3 for the X5 samples and
»=(0.920.1)x10'® cm-2 for the X6 samples.
X5[110] was a 0.851x0.488x0.462-cm bar with
long axis parallel to [110]. X5[100]-stack was a
0.927x0.353%0.36-cm [100]-oriented bar pro-
duced by gluing two nearly cubical pieces together
with GE 7031 varnish. No magnetoelastic oscilla-
tion experiments were made with the samples
from X5. The three X6 bars with axes along [100],
[110], and [111] had dimensions 0.749%0. 274
X0.312 cm, 0.745X0.282%0.244 cm, and 0. 805
X0.269X0. 257 cm, respectively.

The oscillation periods and phases were analyzed
in terms of the factors cos[2r/PB - ¢,] in Egs.
(3.27) and (3.28). The period and phase were
found by assigning successive integers N to the
oscillation peaks and plotting the inverse magnetic
field for the Nth peak, Bj', against N. The major
oscillation periods found in this manner from the
complete set of experiments are presented in
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TABLE III. Measured oscillation periods and cyclotron

masses.
Field Period (10-% G™!) Cyclotron mass (units of mg)
direction X5 X6 X5 X6
(100} b 10.9+0.2 e
[110] 5.46+0,03 14.6+0.2 0.047+0.003 0.033+0.003
[111] 6.55+0.07 18.0+0.3 0.038+0.001 0.027+0.002

Table III. The errors quoted are a combination
of the standard deviation of the mean found from
a least-squares fit of the data and the 0.5% field-
calibration uncertainty of the magnets. These
periods are in agreement with those found by
Cuff et al.®

An important consideration in the analysis was
the relative phases of the MS and ME oscillations.
As Eqs. (3.27) and (3. 28) show, the ME and MS
oscillations for a particular sample and field or-
ientation should be 90° out of phase if our model
is correct. Data like those shown in Fig. 3 con-
firm this phase relation. The sign of the oscilla-
tion depends on the sign of

8€mp o 2InSY
oe, ~H g
i,:1 9€; €;

and the sign of A;,. We find that all of our data
fit consistently into our analytical picture if we
assume y =3. This value of y leads to a negative
value for A;,, which from Eq. (3.3) corresponds
to a negative value for cosimgp. This sign for
cosimgy is in agreement with the gu values
presented in Table I. A least-squares fit of all the
phases within this scheme gives y=0.49+0.01.
For the spheroidal model described by Egs.
(2.2), (2.4), and (2.6) the carrier density p needed
to fill four spheroids is related to the oscillation
period P and the mass anisotropy K =m,;/m; by

p=poP%"%(K cos®6 +sin?9)*/ *K-/* (5.1)

where 6 is the angle between the major axis of the
spheroid, i.e., [111], and the applied magnetic
field, and po=2.263%10' G*%/2 cm™? (a product of
universal constants). Using Eq. (5.1), the periods
presented in Table III, and the measured carrier
concentrations, we find K=6.5(+1.0, —0.6) for

X5 and K=8.3+0.9 for X6. In Fig. 4 we have
plotted our values for K along with values found in
p-type PbTe by other workers. The two most re-
cent studies, those by Burke, Houston, and
Savage® and by Schilz* indicate K values which are
twice as large as those found in our work and that
of three other investigators.3% % %7 Burke et al.
made an extensive study of Shubnikov-de Haas fre-
quencies. They Fourier-analyzed the frequency
spectrum from the three fundamental oscillations

and as many as five harmonics for numerous mag-
netic field directions in the (110) plane. It is quite
difficult to understand the discrepancy between
their results and the results of the other workers.
1t is noteworthy that Burke et al. find that the car-
rier concentration determined from a high-field
Hall measurement agrees with that determined
from the best fit of their data to Eq. (5.1). In
both the work of Stiles et al.® and Cuff ef al.,*
the carrier concentration found from Eq. (5.1)
was about 30% less than that determined from a
Hall measurement for p ~3X10'® cm~=%. The latter
authors attribute these extra carriers to other
pieces of the Fermi surface. Analysis of Coste’s
data¥ gives reasonable agreement between the p
from (5.1) and that from a Hall measurement. %
Since the value of K comes into the amplitude anal-
ysis through the term |8%"/8p%1-1/2 Eqgs. (3.3)
and (A4), the contradictory K values shown in
Fig. 4 will be discussed further in Sec. VB. Un-
less otherwise stated we will use our experimental
values for K.

Cyclotron effective masses were found by mea-
suring the ratio of the MS oscillation amplitudes at
two temperatures. From Egs. (3.27) and (3. 3) the
ratio of the amplitudes at the same magnetic field
but at two different temperatures is given by

€(Ty, B) T,sinh(apT,/B)
€(T2, B) - Tzsinh(a‘J.Tl/B)

(5.2)

This equation was solved by Newton’s method on a
digital computer for a series of oscillation peaks
and temperatures. Data were normally taken near
4.2, 6.5, and 8.5 K. From a weighted least-
squares fitting of the data, we find the masses pre-
sented in Table III. Since the MS amplitudes for
Bi [100] were very small, no masses could be de-
termined for this field direction. No temperature-
dependence studies were made for the magnetoelas-
tic oscillations.

SAMPLE X6[110] n

B (11 AY/Y 3x107°

Yl e Ul [ITO]

T:=42K T

€ 1x10°®
T
1 1 1
0 0 20 30
B (kG)

FIG. 3. Typical magnetostriction and magnetoelastic
oscillation data.
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From Egs. (2.2) and (2. 8) we see that m,=3
X (mq+ Wymg) and m;=Km;. Thus, from the values
just presented we find m,/my=0.028x0.002,
0.023+0.002, and m; /my=0.18+0.02, 0.19+0.02
for the X5 and X6 samples, respectively.

As a test of the internal consistency of the model,
we computed the [110] cyclotron mass using Eq.
(A9), m,, the measured [111] cyclotron mass, and
the measured K. The computed values are 0.044
+0.002 and 0.032+0.002 for X5 and X6, respec-
tively. The agreement between these values and
the measured values shown in Table IIT supports
the self-consistency of the model and measure-
ments.

The Fermi energy is easily computed from the
de Haas-van Alphen period and the effective mass
(see the Appendix):

Ep=(eli/myc)(Pm*/mgy~" . (5.3)

From our data for B 1[111], where m*=m,, we
find Ep=63+5 meV and 28+ 2 meV for samples
X5 and X6, respectively.

At high magnetic fields the ME and MS oscilla-
tions showed a splitting of the oscillation peaks due
to the Zeeman splitting of the Landau levels. For
both B [111] and B11[110], the oscillations from
the second set of ellipsoids make the analysis
ambiguous. However, from the oscillations for
B1[100], where all four ellipsoids have the same
fundamental frequency, we were able to determine
the spin splitting of the peaks. Each peak corre-

TABLE V.

TABLE IV. Dingle temperatures from MS oscilla-

tions (K).
Sample
and Field direction B
direction [110] [1T0] [111] [111]
X5[110] 5.4+0.5 5.2x0.5 4,5+0.3
Xe6[110) 9.2+0.4 8.3x0.5 7.2+0.3
X6[111] 7.3+0.5 8.3+0.6
sponds to a solution of the equation
1/PB=Nz+igh+y+%, (5.4)

where the second term on the right-hand side ac-
counts for the two spin levels for each Landau quan-
tum number N. This term was found by indexing
the oscillation peaks with a spin index and a quan-
tum number and plotting N vs (B3!), and (B3').. The
resulting g factors are compared in Table I with
those found in p-type material by other workers.
Butler and Calawa®® obtained their results from
magnetoemission studies in diode lasers, Schilz*
from magnetoacoustic attenuation oscillations, and
Cuff et al.?® and Burke et al.*” from Shubnikov-
de Haas oscillations

The value of g depends upon the assignment
of spin and quantum numbers to a set of oscilla-
tions. From the phase analysis mentioned above,
we know that cosimgy must be negative, but this
condition does not determine a unique labeling of

Experimental and theoretical values of the absolute value of expression (5.5) (units: 10°!1

cm?dyn™!) from MS oscillations for sample X6 (p=9x10!" em™®) and X5 (p=3.5%x10'® cm™®). The theoretical values were

computed using =,=10.46 eV.

Sample
and strain

direction X5[100]-stack

€l [111]

X5[110] (no sample)

Field

direction 1100 (010] lo11] [110]

X5 expt
values

X5 simple
theory

X5 full
theory

<0.97 <0.42 <0.34 6.5+0.5

0.04+0.02 0.04+0.02 0.02+£0.01 6.9x+3.6

0.19+0.10 0.19+0.10 0.13+0.07 9.2x4.9

6.3+0.7

7.0£3.7 0.04+0.02 3.5+1.8

9.5+5.0

[110] [001] [111] [111] [110]

<0.85 3.5+0.4 oo see

6.9+3.6 4.6+2.4

0.19+£0.10 4.8+2.5 9.4x+4.9 6.4+3.4

Sample
and strain

directicn X6[100]

X6[110] X6[111]

Field
direction
X6 expt
values

X6 simple
theory

X6 full
theory

[100] [o10] [o11] [110]

<4.7 see see 504

56+9 <5.7

[110] [001] [111] [111] [110]

22+ 1 38+3 223

0.08+0.02 0.08+0.02 0.04+0.01 32.9+6.6 32.9+6.6 0.08:0.02 16.5+3.3 32.9+6.6 22.0:4.4

0.30+0.06 0.30+0.06 0.18+0.04 38.9+7.8 39.3%£7.9 0.30+0.06 19.8+4.0 39.2+7.8 26.2+5.2
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the oscillation peaks. The values for %gu in Table
I correspond to a spin splitting greater than half
the Landau splitting. This scheme gives g values
which agree with the values found by Patel and
Slusher® from spin-flip Raman scattering in n-type
material” with »=10'" cm-?

B. Amplitudes

The MS amplitude coefficients were found by fit-
ting the strain oscillation amplitudes to Eqs. (3.37)
and (3.3). From the data we computed the quanti-
ties y = In[€; ny B}/ 2sinh(ap7/B)] for each oscilla-
tion peak, and a linear least-squares fit was made
to a plot of y against B™!. From the equations it
follows that the slope of this plot gives the Dingle
temperature and the y intercept leads to a value
for

9 0
cos z‘n'glJ- 2 ﬁ ﬂS_'L)

0

S 1-1< B¢, S o, (5.5)
This procedure necessitates a knowledge of S%,, u,
and | 8%S¥/ap? | 's‘_{sao for which we use the band param-
rameters presented in Sec. VA and Eq. (A3) of the
Appendix. The Dingle temperatures found from the
MS oscillations are presented in Table IV. The
errors indicated are the standard deviation of the
mean computed from the random error associated
with the amplitude measurements and the uncertain-
ty in i. The magnetostriction amplitudes for
X5[100] and X6[100] were too small to give reliable
Dingle temperatures.

In Table V the strain-derivative sums determined
from the experimental MS amplitudes are presented

529

and compared with values computed from the theory
of Sec. IIIB. The theoretical values were computed
using the deformation potentials from Ferreira’s
theoretical work (Table II) and the elastic constants
measured by Houston, Strakna, and Belson.™ The
extrapolated T =0 K values for the stiffness con-
stants were used to compute the following com-
pliance constants: s, +2s3,=(0.731+0.007)x 10-12
cm?dyn-! and s%=(6.61x0.04)x107'% cm?dyn~!.
The large uncertainties of the theoretical values
result entirely from the uncertainty in cosingp.
Even though gpu is experimentally determined to
better than 10%, cosingp has a large uncertainty
when the function nears zero. The values in Table
Ilead to coszmgp=—(0.19+0.10) for X5 and
-(0.40+0.08) for X6. The errors in the experi-
mental strain-derivative sums are the standard
deviation of the mean due to the uncertainty of the
amplitude measurements and the uncertainties in

u and K. Because of the discrepancy between the
K values found by different experimenters for
p~3%x10'® cm™3, there is an added degree of un-
certainty about the experimental values for X5,
since the amplitude analysis includes the term
1825¥/8p3| -1/2 which is K dependent. For instance,
if we were to use K =13, the value of Burke et al.,
rather than our experimental value K=6.5, all of
the X5 experimental values in Table V would be
reduced by 23% for Bi[100], by 27% for Bi[110],
and by 29% for Bl [111). Using K = 13 instead of
8.3 for X6 gives 17%, 19%, and 20% reductions,
respectively, for these three cases. Since both
cos3mgp and |828¥/9p%| ~1/2 cancel out of the ex-
pressions for the ratio of the ME and MS ampli-

0.20 T T T T T T T 200
$
| T P
» 0.10} \\% 100
(2] S
; 0.08 * %‘ 180 x
Z 006 § 460 E FIG. 4. Published values of
8 o the (111) cyclotron mass p;, and
[ E—_ the mass anisotropy K vs car-
3 0.04k %. 440 ©  rier concentration for p-PbTe.
<>._) ~o See Burke et al., Ref. 47;
o ___%- Z  Coste, Ref. 67; Cuff et al.,
A 4 % - O BURKE ET AL. Ref. 38; Schilz, Ref. 44;
= _--0" ¢ COSTE Stiles et al. (AKCR), Ref. 65;
V o.02k "% O CUFF ET AL. 420 Stiles ef al. (dHvA), Ref. 66.
® SCHILZ
@ STILES ET AL.(AKCR)
® STILES ET AL.(dHvA)
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tudes, the large uncertainties of these parameters
do not enter into the results of the ratio analysis.

MS oscillations were investigated at tempera-
tures from 4 to 9 K. No temperature dependence
of the strain-derivative sums was observed, and the
data in Table V are the average of values over this
temperature range. The oscillations in several
cases were just barely detectable or were not seen
at all. For these cases an upper limit for the am-
plitude coefficient is presented. We had no X5[111]
sample. Because the amplitudes for X6[100] were
quite small for transverse magnetic field config-
urations, we did not attempt to align the field along
specific crystallographic directions for transverse
fields. These facts explain the absence of entries
for the corresponding crystal and field orientations
in Table V.

Two sets of theoretical values are presented in
Table V. The “simple theory” values correspond
to a rigid parabolic band model with infinite energy
gap. In this model the strain mass term 3lnm*/
¢, in Eq. (3.19) is neglected and 8InS%/9¢, is
considered to be due solely to the change in crys-
tal volume (= - %) for dilatation strains (=1, 2 or
3) or due to intervalley charge transfer (=3 Z! /E%)
for shear strains (i=4,5, or 6). The values labeled
“full theory” were computed using the model of Sec.
I, Eqs. (3.19), (3.8), (3.16), (3.17), (3.23),
(3.24), and (2.12). As an example of the magnitudes
of some of the numbers which enter the theoretical
computations, 8lnm*/d¢,, 8InEp/8¢,, and 81nS/
9¢, for X6 with B [110] are presented in Table
VI.

We consider the agreement between the experi-
mental and theoretical values in Table V to be quite
reasonable; however, due to the large uncertainty
in the theoretical values, especially for the X5
data, a definitive quantitative analysis of the ex-
perimental and theoretical amplitude factors is not
possible with the numbers presented in Table V.
However, the relative magnitudes and ratios of the
various terms confirm many of the aspects of the
model we have presented in Sec. III. We can see
this by writing the strain derivatives in a more
transparent form. When evaluating the strain-

TABLE VI. Representative theoretical values for X6

with B Il [110].

dlnm * dlnEgp dInS2
dey d¢ dey
Simple theory
i=1,2, or3 0 -2 -3
i=4,5, or 6 0 124.5 124.5
Full theory
i=1,2, or 3 12.6 - 15.7 - 3.1
i=4,5, or 6 23.5 124.5 148.0

derivative sums for the strain and field directions
shown in Table V via the prescription described
in Sec. III B, one finds that, except for the case
[2,m,n]=[110] with B 11[001], all the sums can be
simplified into the sum of a dilatation term and a
shear term of the form?

5 3 m o S,

B = +D
s° e 86‘ H 8(1 Ne(Bd BS) ’

(5.6)

where N, is the number of equivalent extremal
areas S}, By =(siy +2s1;) 9ISy, /0¢€;, B,=s3,9InS]/
9¢,, and D is a direction-cosine factor which takes
the values 0, 5, -3, 1, and — 3 for the [I, m,n]
directions (100), [110], [110], [111], and [111],
respectively, when the derivative indicated in B,
is performed on the extremal area of the [111]
spheroid. For the case [I,m,n]=[110] with

B [001], the right-hand side of Eq. (5.6) becomes
simply 48,. A significant aspect of the model is
that in this latter case the shear terms cancel
when summed over the four spheroids—the shear
strain causes two of the valence-band maxima to
move up in energy, thereby increasing the ex-
tremal areas at the Fermi energy and the other
two move down, decreasing their areas. Com-
paring Eq. (5.6) with the experimental data in
Table V, we see that qualitatively the data fit our
theoretical model quite well. We find, for ex-
ample, that |g,l >» |84]; the “full theory’ values
in Table VI lead to B;= - 2. 2x107!2 cm®dyn~! and
Bs=977x1072 cm?dyn~!, and these values are
typical of the large difference between the dilata-
tion and shear contributions to the strain-deriva-
tive sums predicted by our theoretical model, in-
cluding other field directions and for sample X5.
Since the shear term g, is theoretically so much
larger than the dilatation term 8;, any term in
Eq. (5.6) which contains g, will be much larger
than terms which do not contain 8.

From Table V we see that for all cases where
Eq. (5.6) shows contributions from only the di-
latation strains (i.e., |[I,m,n|=[100], D=0, or a
[110] strain with B11[001]), the experimental values
are at least an order of magnitude smaller than
those for which Eq. (5.6) shows shear contribu-
tions. This result confirms one aspect of the
model.

Another confirming aspect of the MS data comes
fram the ratios of various terms in Table V. Using
Eq. (5.6) and assuming B,> 8, the strain-deriva-
tive sums for B 11 [110] with [Z, m, ] along [110]
[110] and [1T1] should be in the ratio 3: -3.
For Bl [111] with [1, m, n] along [111] a.nd [110] the
ratio should be 1: —3. The experimental data are
in good agreement with these predictions. Perhaps
the most striking experimental confirmation of the
model comes from the observed phases. As we
pointed out in Sec. V A, the phases are in complete
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FIG. 5. Amplitude € and phase ¢ of [110] magneto-
striction oscillations for B near [001] for sample X6.

agreement with our model; e.g., the MS oscilla-
tions for B [110] with [I,7,7]1[110] and [110] are
180° out of phase, as we would expect from Eq.
(5.6).

The observed changes in amplitude and the phase
shifts of the MS oscillations due to cancellation of
the shear terms as the magnetic field is rotated
into the [001] direction in the (110) plane are shown
by the experimental data in Fig. 5. The experi-
mental results with B or [I,m, ] along (100) are
difficult to analyze because the strain amplitudes
are quite small and any slight misalignment of the
sample would produce an anomalously large sig-
nal. This fact is made quite apparent by Fig. 5.

The ME amplitude analysis is quite similar to
the MS analysis. A linear least-squares fit was
made of

x=In[A(Y; )" B/ 2sinh(anT/B)]

against B!, From Egs. (3.28) and (3. 3) it fol-
lows that the Dingle temperature comes from the
slope of the curve and the x intercept gives a value
for

8 0 \2
€ 8InS
cos%wguZ( 2 2 st 5 "‘) . (5.7)
S0\ 4,721 9€ €

m

The Dingle temperatures found from the ME am-
plitude analysis are presented in Table VII. The
ME Dingle temperatures for B (110) are consis-
tently lower than the MS Dingle temperatures for
the same samples, whereas for B (111) the ME
Dingle temperatures are larger than the MS Dingle
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temperatures. This result is unexpected within
the framework of our model.

Table VIII shows theoretical and experimental
values determined for the ME strain-derivative
sums. The “simple theory” and “full theory”
values have the same meaning as for the MS the-
oretical values. The elastic constants, deforma-
tion potentials, and the value of cos%-rrgu used for
the theoretical evaluations are the same as those
used to calculate the MS amplitude terms. Again,
the uncertainty in the theoretical values comes
from the uncertainty in coszmgp. Recall also that
the experimental values depend upon the value of
K used in the data reduction. Using K =13 instead
of 8.3 leads to a reduction of the experimental
values by 17%, 19%, and 20% for the [100], [110],
and [111] magnetic field directions, respectively.

Just as we were able to write the MS strain
derivative sums in a form which illuminates the
significance of the relative magnitudes of the values
in Table V, we find that the ME strain-derivative
sums for all the sample and field directions shown
in Table VII, except the case [I,m,n]=[110] with
B1[001], can be expressed in the form

8 98¢, o 9InSY\?
§<1211 b6, ¥ ae,'"> =Ne(Bs+DBy)*, (5.8)
m =

where all the terms have the same meaning as in
Eq. (5.6). For the case [I,m,n]=[110] with

B [001], the right-hand side of Eq. (5.8) becomes
4(82 + 1p%). Remember that for the comparable
MS case the shear terms B, cancelled out when
summed over the four spheroids. In the ME case
the strain derivatives are all squared before they
are summed, and the shear term does not cancel.
Since | B¢l > IB,4], as seen experimentally and the-
oretically from both the MS and ME data, the MS
strain-derivative sum for the case [I,m,n]=[110]
with B 11[{001] was an order of magnitude less than
the sums involving g,. In contrast, the ME strain-
derivative sum for this orientation is seen to be of
the same magnitude as in the other cases.

Using | B¢l > 1841, Eq. (5.8) predicts that for
X6[110] the ratio of the strain-derivative sums for
Bu[110], [110], [001], and [111], respectively,
should be 2:2:4 :1. The experimental values
confirm this aspect of the theoretical model rea-

TABLE VII. Dingle temperatures from ME oscillations (K).

Sample Field direction

and

axis (100] [001] [110] [1io] [111] [111]
X6[100] 9.6+0.8 8.3x1.0 6.8+0.9
X6[110] 8.4+0.4 8.5+0.4 7.5+0.3 8.2+0.5
X6[111) 7.3£0.5 10.2 +0.2
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TABLE VIII. Experimental and theoretical values of expression (5.7) in the text (units: 10°2° cm*dyn?) from ME
oscillations for sample X6. The theoretical values were computed using Z}=10.46 eV.

Sample

and axis X6[100] X6[110] Xe6[111])
Field [100] [010] [o11] [110] (110] [001] (i) [111] (110]
direction

Experi-

mental 3.1+0.7 2.9x0.9 1.3x0.3 23+3 152 334 9.7+1.6 2.7+0.4 2.6x0.3
values

Simple

theory 0.0 0.0 0.0 13.5+£2.7 13.5x2.7 27+5 6.8x1.4 275 61
Full 0.0 0.0 0.0 18.9+3.8 19.3+3.9 377 9.8+2,0 38.,5+7.7 8.6x1.7
theory

sonably well. The experimental values for X6[110]
are also in reasonably good agreement with those
predicted by the theoretical model. The fact that
the ME theoretical values predicted for X6[100]
are much smaller than the values measured is not
too surprising since our model and calculations
contain several simplifying assumptions. The
X6[100] experimental values are, in fact, an order
of magnitude smaller than the X6[110] experimental
values. This we understand qualitatively within
the framework of our model. The order-of-mag-
nitude disagreement between experiment and theory
for X6[111] is not understood at this time. The ex-
periments on X6[111] were carefully repeated in
an unsuccessful attempt to resolve this discrep-
ancy. Equation (5.8) predicts that the strain-de-
rivative sum for X6[111] with B [111] should be
equal to the X6[110] value for B [001] and that
the value for the X6[111] case with B [110] should
be £ of this value. The MS data for X6[111] gave
good agreement between experiment and theory,
so the discrepancy does not seem to be associated
with this particular sample.

We have already pointed out in Sec. IIIC that
the expression for the ratio of the ME to the MS
amplitudes is greatly simplified owing to the cancel-
lation of most of the coefficient A,, which contains,
among other things, a K factor term and coszngu.
From Eqgs. (3.27), (3.28), (5.6), and (5.8) we see
that for all the sample configurations in Tables V
and VII, except the case [I,m,n]=[110] with
B [001], the expression for the ratio of the am-
plitudes takes the form

AYym) !
€lmn
S S 8€,m o OIS  au(re.r
= Limp 0 2O jau(Th- E)/a‘

CelB 0 (4 9¢; "M g
(5.9)

If the Dingle temperatures were the same, the
right-hand side of Eq. (5.9) would have a simple

B! field dependence. The experimentally observed
field dependence does, in fact, deviate from B!,
and we attribute this wholly to the difference in
Dingle temperatures.

Since the X6[100] amplitudes are too small and
the X6[111] ME data are questionable, we have
only the data from X6[110] for the ratio. (No ME
measurements were made on the X5 samples.)

By least-squares fitting a semilog plot of Eq. (5.9)
for the data from X6[110], we find the parameters
presented in Tables IX and X. As can readily be
seen from Table IX, the ME and MS Dingle-tem-
perature difference determined from the ratio, Eq.
(5.9), and the difference obtained from the values
from the two separate experiments agree quite
well. The nature of this difference is not under-
stood within the framework of our thermodynamic
model.

The strain-derivative sums determined from the
ratio are displayed in Table X. The terms “sim-
ple theory” and “full theory” have the same mean-
ings as above. The experimental values for the
ratio are independent of the K value and the
cos%ngu so that uncertainties in these parameters
have no effect on the results. The uncertainties of
the experimental values in Table X are mainly due
to the random uncertainties of the amplitude mea-
surements themselves.

TABLE IX. Difference between the MS and ME Dingle
temperatures, 79— T} (K).

Sample and
axis X6[110]
Field - -
direction [110] [110] [111]
From Eq. (5.9)* 1.4+0.1 1.3+£0.7 -1.2%0.2
From Tables IV

and VII® 0.7+0.6 0.8+0.6 -1.0£0.6

*Fitting the ME-MS ratio data to Eq. (5.9).
PDifference between the values determined by the two
separate experiments.
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TABLE X. Absolute value of expression (5.6) in the
text (units: 107! cm?dyn™!) determined from the ME-MS
amplitude ratio, using = =7.9x1.3 eV for the theoreti-
cal values.

Sample

and axis X6[110]

Field [110] (1i0] (1i1)
direction

Experimental 47, 2635 4843
values

Simple theory 315 315 315
Full theory 376 376 376

From our theoretical model [see, for instance,

Table VI and Eq. (3. 24)] we find that the strain-
derivative sums shown in Table X are essentially
linearly proportional to = }; therefore, for the the-
oretical values in Table X we have scaled the de-
formation potential to give the best fit of the theory
to the experiment. The best value Z5=7.9+1.3
eV is in good agreement with the value 8.5 eV
found from piezoresistance measurements by
Burke.® When we scale the ME data above for a
best fit between experiment and theory, we find
Z3=10.1+1.2eV. The uncertainty in the deforma-
tion potential determined from the ME data above
comes mainly from the uncertainty in cos3ng L.
For the ME case, however, we must concern our-
selves with the question of whether K is more like
13 or 8.3. The 10% uncertainty introduced by this
difference is not included in the +1.2 eV.

Having found a value for the deformation poten-
tial from the MS-ME amplitude ratio, we next re-
turn to the MS and ME data to find a value for
coszngj.. Taking Z2=7.9x1.3 eV, we use our
theoretical model to compute values for the strain-
derivative sums and then combine these results
with Egs. (3.27) and (3. 28) and the experimental
amplitudes to find cos%ﬂgu. The results of this
procedure are given in Table XI. The comparison
of the spin factor found in this manner with the
value found directly from the splitting of the os-
cillation peaks is a further test of the internal con-
sistency of the theoretical model. Assuming
cos3mgu to be the same in the [100], [110], and
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[111] directions, and incorporating our phase re-
sults which indicate that this function must be nega-
tive, the average of the X5 values in Table XI give
cos3ng = —(0.18+0.02) compared with the spin-
splitting value of —(0.19+0.10). The X6 values
average to —(0.57 +0.06) compared with the spin-
splitting value of —(0.40+0.08). For this analysis
we have used our own values for K. If we had used
the K value of Burke et al., the X5 and X6 data in
Table XI would have to be shifted down by 28% and
15%, respectively. If our model is correct this in-
dicates that a value of K =13 for p=3%x10'® cm™® is
too high.

VI. SUMMARY AND CONCLUSIONS

We have presented a detailed experimental and
theoretical study of quantum oscillations in the
magnetostriction (oscillatory magnetostriction) and
Young’s modulus (magnetoelastic oscillations) of
p-PbTe. The latter represents the first observa-
tion of quantum oscillations in the elastic constants
of a semiconductor. In the theory, the oscillatory
magnetostriction and magnetoelastic oscillations
are related to strain derivatives of extremal
Fermi-surface cross-sectional areas using ap-
propriate thermodynamic derivatives of the modi-
fied Lifshitz-Kosevich expression for the quantum
oscillatory electronic free energy. These strain
derivatives are in turn related to a deformation
potential description of the strain dependence of
the electronic band structure using an adaptation
of Cohen’s nonellipsoidal nonparabolic band model
to describe the nearly spheroidal nonparabolic
valence band of PbTe.

From the periods, phases, and spin splitting
of the oscillations, we find experimental band pa-
rameters for p-PbTe which are in generally good
agreement with parameters reported by other
workers, although there is a discrepancy with re-
cent results of Burke, Houston, and Savage® and
of Schilz** in the value of the Fermi-surface an-
isotropy constant K. These latter workers found
values of K near 13 for carrier concentrations near
3%10'® cm™®, whereas we found K=6.5 for p=3.5
x10'® cm 2,

The absolute amplitudes of the magnetostriction
and magnetoelastic oscillations were generally in

TABLE XI. | cos3 ngi | determined from MS and ME amplitude data assuming Z%=7.9+1.3 eV.

Effect, sample,

Field direction

and axis [110] [110] [001] [111] f111]
MS X5[(110] 0.18+0.03 0.17+0.03 0.18+0.04
MS X6[110] 0.68+0.13 0.76+0.18 0.59+0.10
MS X6[111] 0.44+0,10 0.52+0.10
ME X6[110] 0.86=0.33 0.55%0.21 0.63+0.24 0.70+0,28
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good agreement with the predictions of our theory.
From the ratio of the amplitudes of the two types

of oscillation we have derived a value of the valence -
band deformation potential =, =7.9+1.3 eV. This
agrees well with the value 8.5 e Vpreviously obtained
by Burke®from piezoresistance measurements. The
relative phase of the two types of oscillation is in
accord with that predicted by the theory. A detailed
study of the absolute amplitudes of the two types

of oscillations indicates that the dominant effect of
strain on the valence band is a lifting of the degen-
eracy of the valence-band maxima by shear strains
accompanied by intervalley charge transfer. The
effects of strain on the band parameters (the so-
called strain-mass effects) are roughly an order

of magnitude smaller than the intervalley charge-
transfer effects. This is in contradiction with a
conclusion of Belson et al.'® based on oscillatory
magnetostriction experiments only. In their anal-
ysis these workers used band parameters from the
literature which give a value of the spin-splitting
factor in disagreement with our experimental ob-
servations, and in addition their analysis appears
to contain a numerical error. If these two features
of their analysis are corrected, their results are
seen to be consistent with small strain-mass ef-
fects. Study of our amplitude results also suggests
that our value of the Fermi-surface anisotropy con-
stant i8 more nearly correct than the higher values
reported by Burke, Houston, and Savage, and by
Schilz,

APPENDIX

In this appendix we present some basic rela-
tionships between the band parameters for our
spheroidal nonparabolic energy-band model of
PbTe. Most of the relations follow directly from
geometric considerations.

The four (111) spheroidal bands described by
Egs. (2.2), (2.4), and (2.6) can accommodate a
total carrier density p if the volume V, in mo-
mentum space of each spheroid is

Vy(Ep)=(p/8) h*=$12m, Ep (2m, Ep)*/? .
This requires that the Fermi energy E be
ﬁ2(3,n,2 /4)2/3
EF = N 173 .
2m,K
From straightforward geometrical considerations
the area of intersection S between a plane perpen-

dicular to an axis pz and a spheroidal Fermi sur-
face is found to be

(A1)

2mm,VKEp TpEVK
(K cos0 +sin%6)172 ~ (K cos?0 +sin26)3/2 *

(A2)

s(eypB) =

where 6 is the angle between the pg axis and the
spheroid axis and pp is the distance from the plane
to the center of the spheroid.

The period of the quantum oscillations is de-
termined by the maximum cross-sectional area
S,, of the Fermi surface perpendicular to the field
direction, P=eh/cS,,. From (A2) we see that the
maximum cross-sectional area occurs when
pp=0, giving
efi(K cos 26 + sin?p)!/?

P(e)= cm VK Ey

(A3)

From (A2) we can evaluate one of the important
amplitude factors of the Lifshitz-Kosevich equation
[Eq. (3.3)]:

2g|-1/2 1/2
:—pf— = (%) [cos?6 + (sin26)/K /4. (A4)
B

S=Sm

It is convenient to define a band mass m* for the
nonparabolic bands by the relation

1\2 cos? sin%
—) === A5
<m*> my " mym, (A5)

The preceding expressions can be written more
easily in terms of this band mass:

S,.(6) = 21m*Ep (A6)
P(6)=en/cEpm* (A7)
825 |-1/2 K 1/2<m,>3/2
o2 —< 21r> m* ’ (48)
58

m

The reduced cyclotron mass for a magnetic field
in the B direction is defined as  =(1/2mm)(8S,,/
8E)E, . Substituting Eq. (2.6) into Eq. (A2) and
differentiating, we find

(l)z _(cosze .
K et

where , = (my/my)(1 + 2E5 /E,), 11y = my/m,, and
®=(1-£)(1+2r)%1+2r —7rw)"2, where »=Ep /Eg,
w=31+7)[1+7+(mg/m,)cot?0]™, and £=+{1+2r
+(my/m,)cot?9]™t. Using the experimental results
for PbTe from Sec. VA, & is found to be very
near 1 when the field is in any of the principal
crystallographic directions: For the X6 samples
0.99<& <1, and for X5, 0.97<® <1. Thus, for
all practical purposes we can set ®=1. Notice
that w,#m; /m,, except for Ez/E,=0.

2
51n9)®’

Kt Mg (49)
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